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The neuron

I The sigmoid equation is what is typically used as a transfer
function between neurons. It is similar to the step function,
but is continuous and differentiable.
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Figure: The Sigmoid Function

I One useful property of this transfer function is the simplicity
of computing it’s derivative. Let’s do that now...
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Single input neuron
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Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

O = σ(ξω)



Single input neuron
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Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

O = σ(ξω + θ)



Multiple input neuron
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Figure: A Multiple Input Neuron

Figure 3 is the diagram representing the following equation:

O = σ(ω1ξ1 + ω2ξ2 + ω3ξ3 + θ)



A neural network
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Figure: A layer
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The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer
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The error calculation

Given a set of training data points tk and output layer output Ok

we can write the error as

E =
1

2

∑
k∈K

(Ok − tk)2

We let the error of the network for a single training iteration be
denoted by E . We want to calculate ∂E

∂W `
jk

, the rate of change of

the error with respect to the given connective weight, so we can
minimize it.
Now we consider two cases: The node is an output node, or it is in
a hidden layer...



Output layer node

∂E

∂Wjk
=

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)
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δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj
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How weights affect errors

For an output layer node k ∈ K

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)

For a hidden layer node j ∈ J

∂E

∂Wij
= Oiδj

where
δj = Oj(1−Oj)

∑
k∈K

δkWjk



What about the bias?

If we incorporate the bias term θ into the equation you will find
that

∂O
∂θ

= O(1−O)
∂θ

∂θ

and because ∂θ/∂θ = 1 we view the bias term as output from a
node which is always one.

This holds for any layer ` we are concerned with, a substitution
into the previous equations gives us that

∂E

∂θ
= δ`

(because the O` is replacing the output from the “previous layer”)
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The back propagation algorithm

1. Run the network forward with your input data to get the
network output

2. For each output node compute

δk = Ok(1−Ok)(Ok − tk)

3. For each hidden node calulate

δj = Oj(1−Oj)
∑
k∈K

δkWjk

4. Update the weights and biases as follows
Given

∆W = −ηδ`O`−1

∆θ = −ηδ`
apply

W + ∆W →W

θ + ∆θ → θ


