January 8, 2012

Ryan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The neuron

The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

The neuron

The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

Figure: The Sigmoid Function

The neuron

The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

Figure: The Sigmoid Function

One useful property of this transfer function is the simplicity of computing it's derivative. Let's do that now...

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{1+e^{-x}-1}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right) \\ = \frac{e^{-x}}{(1+e^{-x})^2} \\ = \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$
$$= \frac{1+e^{-x}}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$
$$= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2$$

$$\begin{aligned} \frac{d}{dx}\sigma(x) &= \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right) \\ &= \frac{e^{-x}}{(1+e^{-x})^2} \\ &= \frac{(1+e^{-x})-1}{(1+e^{-x})^2} \\ &= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2 \\ &= \sigma(x) - \sigma(x)^2 \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

= $\frac{e^{-x}}{(1+e^{-x})^2}$
= $\frac{(1+e^{-x})-1}{(1+e^{-x})^2}$
= $\frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2$
= $\sigma(x) - \sigma(x)^2$
 $\sigma' = \sigma(1-\sigma)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Single input neuron

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single neuron with only a single input. The equation defining the figure is:

$$\mathcal{O} = \sigma(\xi\omega)$$

Single input neuron

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single neuron with only a single input. The equation defining the figure is:

$$\mathcal{O} = \sigma(\xi\omega + \theta)$$

Multiple input neuron

Figure: A Multiple Input Neuron

Figure 3 is the diagram representing the following equation:

$$\mathcal{O} = \sigma(\omega_1\xi_1 + \omega_2\xi_2 + \omega_3\xi_3 + \theta)$$

A neural network

Figure: A layer

A neural network

Figure: A neural network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A neural network

Figure: A neural network

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

•
$$x_j^\ell$$
 : Input to node j of layer ℓ

Notation

- x_i^{ℓ} : Input to node j of layer ℓ
- W_{ij}^{ℓ} : Weight from layer $\ell 1$ node *i* to layer ℓ node *j*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notation

- x_i^{ℓ} : Input to node j of layer ℓ
- W_{ij}^{ℓ} : Weight from layer $\ell 1$ node *i* to layer ℓ node *j*

Notation

- x_i^{ℓ} : Input to node j of layer ℓ
- ▶ W_{ij}^{ℓ} : Weight from layer $\ell 1$ node i to layer ℓ node j

•
$$\theta_i^{\ell}$$
 : Bias of node *j* of layer ℓ

Notation

- x_i^{ℓ} : Input to node j of layer ℓ
- W_{ij}^{ℓ} : Weight from layer $\ell 1$ node i to layer ℓ node j

•
$$heta_j^\ell$$
 : Bias of node j of layer ℓ

•
$$\mathcal{O}_j^{\ell}$$
 : Output of node j in layer ℓ

Notation

- x_i^{ℓ} : Input to node j of layer ℓ
- ▶ W_{ij}^{ℓ} : Weight from layer $\ell 1$ node i to layer ℓ node j

•
$$\theta_i^{\ell}$$
: Bias of node *j* of layer ℓ

- \mathcal{O}_{i}^{ℓ} : Output of node j in layer ℓ
- t_j : Target value of node j of the output layer

The error calculation

Given a set of training data points t_k and output layer output \mathcal{O}_k we can write the error as

$$E = rac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2$$

We let the error of the network for a single training iteration be denoted by *E*. We want to calculate $\frac{\partial E}{\partial W_{jk}^{\ell}}$, the rate of change of the error with respect to the given connective weight, so we can minimize it.

Now we consider two cases: The node is an output node, or it is in a hidden layer...

 $\frac{\partial E}{\partial W_{jk}} =$

$$\frac{\partial E}{\partial W_{jk}} = \frac{\partial}{\partial W_{jk}} \frac{1}{2} \sum_{k \in \mathcal{K}} (\mathcal{O}_k - t_k)^2$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{jk}} \mathcal{O}_k$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{jk}} \sigma(x_k)$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k)\sigma(x_k)(1 - \sigma(x_k))\frac{\partial}{\partial W_{jk}}x_k$$

$$rac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)\mathcal{O}_j$$

$$rac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)\mathcal{O}_j$$

For notation purposes I will define δ_k to be the expression $(\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)$, so we can rewrite the equation above as

$$\frac{\partial E}{\partial W_{jk}} = \mathcal{O}_j \delta_k$$

where

$$\delta_k = \mathcal{O}_k(1 - \mathcal{O}_k)(\mathcal{O}_k - t_k)$$

 $rac{\partial E}{\partial W_{ij}} =$

$$rac{\partial E}{\partial W_{ij}} = rac{\partial}{\partial W_{ij}} rac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{ij}} \mathcal{O}_k$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{ij}} \sigma(x_k)$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \sigma(x_k) (1 - \sigma(x_k)) \frac{\partial x_k}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) \frac{\partial x_k}{\partial \mathcal{O}_j} \cdot \frac{\partial \mathcal{O}_j}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk} \frac{\partial \mathcal{O}_j}{\partial W_{ij}}$$

$$rac{\partial {m{\mathcal{E}}}}{\partial W_{ij}} = rac{\partial \mathcal{O}_j}{\partial W_{ij}} \sum_{k \in \mathcal{K}} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1-\mathcal{O}_j)\frac{\partial x_j}{\partial W_{ij}}\sum_{k\in\mathcal{K}}(\mathcal{O}_k-t_k)\mathcal{O}_k(1-\mathcal{O}_k)W_{jk}$$

$$rac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1-\mathcal{O}_j)\mathcal{O}_i\sum_{k\in K}(\mathcal{O}_k-t_k)\mathcal{O}_k(1-\mathcal{O}_k)W_{jk}$$

$$rac{\partial {m{\mathcal{E}}}}{\partial W_{ij}} = \mathcal{O}_j(1-\mathcal{O}_j)\mathcal{O}_i\sum_{k\in \mathcal{K}}(\mathcal{O}_k-t_k)\mathcal{O}_k(1-\mathcal{O}_k)W_{jk}$$

But, recalling our definition of δ_k we can write this as

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

$$rac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1-\mathcal{O}_j)\mathcal{O}_i\sum_{k\in\mathcal{K}}(\mathcal{O}_k-t_k)\mathcal{O}_k(1-\mathcal{O}_k)W_{jk}$$

But, recalling our definition of δ_k we can write this as

$$rac{\partial \mathcal{E}}{\partial \mathcal{W}_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in \mathcal{K}} \delta_k \mathcal{W}_{jk}$$

Similar to before we will now define all terms besides the O_i to be δ_i , so we have

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \delta_j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

How weights affect errors

For an output layer node $k \in K$

$$\frac{\partial E}{\partial W_{jk}} = \mathcal{O}_j \delta_k$$

where

$$\delta_k = \mathcal{O}_k(1 - \mathcal{O}_k)(\mathcal{O}_k - t_k)$$

For a hidden layer node $j \in J$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \delta_j$$

where

$$\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum_{k \in \mathcal{K}} \delta_k W_{jk}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What about the bias?

If we incorporate the bias term θ into the equation you will find that

$$rac{\partial \mathcal{O}}{\partial heta} = \mathcal{O}(1-\mathcal{O}) rac{\partial heta}{\partial heta}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

and because $\partial \theta / \partial \theta = 1$ we view the bias term as output from a node which is always one.

What about the bias?

If we incorporate the bias term θ into the equation you will find that

$$rac{\partial \mathcal{O}}{\partial heta} = \mathcal{O}(1-\mathcal{O}) rac{\partial heta}{\partial heta}$$

and because $\partial \theta / \partial \theta = 1$ we view the bias term as output from a node which is always one.

This holds for any layer ℓ we are concerned with, a substitution into the previous equations gives us that

$$\frac{\partial E}{\partial \theta} = \delta_{\ell}$$

(ロ) (同) (E) (E) (E) (O)(O)

(because the \mathcal{O}_{ℓ} is replacing the output from the "previous layer")

The back propagation algorithm

- 1. Run the network forward with your input data to get the network output
- 2. For each output node compute

$$\delta_k = \mathcal{O}_k (1 - \mathcal{O}_k) (\mathcal{O}_k - t_k)$$

3. For each hidden node calulate

$$\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

4. Update the weights and biases as follows Given

$$\Delta W = -\eta \delta_\ell \mathcal{O}_{\ell-1}$$

 $\Delta heta = -\eta \delta_\ell$

apply

$$W + \Delta W \rightarrow W$$

 $\theta + \Delta \theta \rightarrow \theta$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・