
The back-propagation algorithm

January 8, 2012

Ryan



The neuron

I The sigmoid equation is what is typically used as a transfer
function between neurons. It is similar to the step function,
but is continuous and differentiable.

I

σ(x) =
1

1 + e−x
(1)

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

Figure: The Sigmoid Function

I One useful property of this transfer function is the simplicity
of computing it’s derivative. Let’s do that now...



The neuron

I The sigmoid equation is what is typically used as a transfer
function between neurons. It is similar to the step function,
but is continuous and differentiable.

I

σ(x) =
1

1 + e−x
(1)

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

Figure: The Sigmoid Function

I One useful property of this transfer function is the simplicity
of computing it’s derivative. Let’s do that now...



The neuron

I The sigmoid equation is what is typically used as a transfer
function between neurons. It is similar to the step function,
but is continuous and differentiable.

I

σ(x) =
1

1 + e−x
(1)

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

Figure: The Sigmoid Function

I One useful property of this transfer function is the simplicity
of computing it’s derivative. Let’s do that now...



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)

=
e−x

(1 + e−x)2

=

(

1 + e−x

)

− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−

(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=

(

1 + e−x

)

− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−

(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=

(

1 + e−x

)

− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−

(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=
(1 + e−x)− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−

(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=
(1 + e−x)− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−

(

1

(1 + e−x) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=
(1 + e−x)− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−
(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=
(1 + e−x)− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−
(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



The derivative of the sigmoid transfer function

d

dx
σ(x) =

d

dx

(
1

1 + e−x

)
=

e−x

(1 + e−x)2

=
(1 + e−x)− 1

(1 + e−x)2

=
1 + e−x

(1 + e−x)2
−
(

1

(

1 + e−x

) 2

)
2

= σ(x)− σ(x)2

σ′ = σ(1− σ)



Single input neuron

σξ
ω

θ

O

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

O = σ(ξω)



Single input neuron

σξ
ω

θ

O

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

O = σ(ξω + θ)



Multiple input neuron

ξ1
ω1

ξ2
ω2

ξ3
ω3

θ

O
∑

σ

Figure: A Multiple Input Neuron

Figure 3 is the diagram representing the following equation:

O = σ(ω1ξ1 + ω2ξ2 + ω3ξ3 + θ)



A neural network

I J K

Figure: A layer

A neural network



A neural network

I J K

Figure: A neural network



A neural network

I J K

Figure: A neural network



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The back propagation algorithm

Notation

I x`j : Input to node j of layer `

I W `
ij : Weight from layer `− 1 node i to layer ` node j

I σ(x) = 1
1+e−x : Sigmoid Transfer Function

I θ`j : Bias of node j of layer `

I O`
j : Output of node j in layer `

I tj : Target value of node j of the output layer



The error calculation

Given a set of training data points tk and output layer output Ok

we can write the error as

E =
1

2

∑
k∈K

(Ok − tk)2

We let the error of the network for a single training iteration be
denoted by E . We want to calculate ∂E

∂W `
jk

, the rate of change of

the error with respect to the given connective weight, so we can
minimize it.
Now we consider two cases: The node is an output node, or it is in
a hidden layer...



Output layer node

∂E

∂Wjk
=

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
=

∂

∂Wjk

1

2

∑
k∈K

(Ok − tk)2

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
= (Ok − tk)

∂

∂Wjk
Ok

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
= (Ok − tk)

∂

∂Wjk
σ(xk)

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
= (Ok − tk)σ(xk)(1− σ(xk))

∂

∂Wjk
xk

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
= (Ok − tk)Ok(1−Ok)Oj

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Output layer node

∂E

∂Wjk
= (Ok − tk)Ok(1−Ok)Oj

For notation purposes I will define δk to be the expression
(Ok − tk)Ok(1−Ok), so we can rewrite the equation above as

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)



Hidden layer node

∂E

∂Wij
=

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=

∂

∂Wij

1

2

∑
k∈K

(Ok − tk)2

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=
∑
k∈K

(Ok − tk)
∂

∂Wij
Ok

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=
∑
k∈K

(Ok − tk)
∂

∂Wij
σ(xk)

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=
∑
k∈K

(Ok − tk)σ(xk)(1− σ(xk))
∂xk
∂Wij

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=
∑
k∈K

(Ok − tk)Ok(1−Ok)
∂xk
∂Oj

·
∂Oj

∂Wij

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=
∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk
∂Oj

∂Wij

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
=

∂Oj

∂Wij

∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
= Oj(1−Oj)

∂xj
∂Wij

∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
= Oj(1−Oj)Oi

∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
= Oj(1−Oj)Oi

∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



Hidden layer node

∂E

∂Wij
= Oj(1−Oj)Oi

∑
k∈K

(Ok − tk)Ok(1−Ok)Wjk

But, recalling our definition of δk we can write this as

∂E

∂Wij
= OiOj(1−Oj)

∑
k∈K

δkWjk

Similar to before we will now define all terms besides the Oi to be
δj , so we have

∂E

∂Wij
= Oiδj



How weights affect errors

For an output layer node k ∈ K

∂E

∂Wjk
= Ojδk

where
δk = Ok(1−Ok)(Ok − tk)

For a hidden layer node j ∈ J

∂E

∂Wij
= Oiδj

where
δj = Oj(1−Oj)

∑
k∈K

δkWjk



What about the bias?

If we incorporate the bias term θ into the equation you will find
that

∂O
∂θ

= O(1−O)
∂θ

∂θ

and because ∂θ/∂θ = 1 we view the bias term as output from a
node which is always one.

This holds for any layer ` we are concerned with, a substitution
into the previous equations gives us that

∂E

∂θ
= δ`

(because the O` is replacing the output from the “previous layer”)



What about the bias?

If we incorporate the bias term θ into the equation you will find
that

∂O
∂θ

= O(1−O)
∂θ

∂θ

and because ∂θ/∂θ = 1 we view the bias term as output from a
node which is always one.
This holds for any layer ` we are concerned with, a substitution
into the previous equations gives us that

∂E

∂θ
= δ`

(because the O` is replacing the output from the “previous layer”)



The back propagation algorithm

1. Run the network forward with your input data to get the
network output

2. For each output node compute

δk = Ok(1−Ok)(Ok − tk)

3. For each hidden node calulate

δj = Oj(1−Oj)
∑
k∈K

δkWjk

4. Update the weights and biases as follows
Given

∆W = −ηδ`O`−1

∆θ = −ηδ`
apply

W + ∆W →W

θ + ∆θ → θ


